
One-Sided Terrain Guarding and Chordal
Graphs

Kasthurirangan Prahlad Narasimhan

National Institute of Science Education and Research, Bhubaneswar, HBNI, India
kprahlad.narasimhan@niser.ac.in

Abstract. The Terrain Guarding problem, a variant of the famous
Art Gallery problem, has garnered significant attention over the last
two decades in Computational Geometry from the viewpoint of com-
plexity and approximability. Both the continuous and discrete versions
of the problem were shown to be NP-Hard in [23] and to admit a PTAS
[24,14]. The biggest unsolved question regarding this problem is if it is
fixed-parameter tractable with respect to the size of the guard set. In this
paper, we present two theorems that establish a relationship between a
restricted case of the One-Sided Terrain Guarding problem and the
Clique Cover problem in chordal graphs. Similar results were obtained
in [20] for a special class of terrains called orthogonal terrains and were
used to present a FPT algorithm with respect to the parameter that we
require for Discrete Orthogonal Terrain Guarding in [3]. We hope
that the results obtained in this paper can, in future work, be used to
produce such an algorithm for Discrete Terrain Guarding.
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1 Introduction

Let V = {v1, . . . , vn} be a finite sequence of three or more points in R2. The
polygonal chain defined by V is the curve specified by the line segments con-
necting vi and vi+1 for all 1 ≤ i < n. In this paper, we additionally assume that
polygonal chains are simple curves. For a point v in R2, we use x(v) and y(v) to
denote the x and y coordinates of v. A 1.5-dimensional terrain (which we will
refer to as a terrain) is a polygonal chain defined by V where x(vi) ≤ x(vj) for
all i and j such that 1 ≤ i < j ≤ n. We say that two points t1 and t2 on a terrain
T see or guard each other if no point on t1t2, the line segment joining t1 and
t2, lies strictly below the terrain. Examples of terrains are shown in Figures 1a
and 1b. Let U be a set of points on the terrain. The visibility region of U is
defined to be the collection of all points on the terrain which is seen by at least
one point of U . We let Vis U denote this set. The encircled vertices in Figure 1a
are precisely the ones that are present in Vis U when U = {v2, v9}. When U
contains a single element, say u, we abuse this notation and write Vis u instead
of Vis U . It is sometimes useful to view a terrain T as an undirected graph with
vertices V and edges E = {(vi, vi+1) | 1 ≤ i < n}. We switch between viewing a
terrain as a polygonal chain and a graph frequently in this paper.
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These definitions naturally lead us to the three major versions of the terrain
guarding problem. They revolve around finding k-many points (called guards)
on the terrain to guard a chosen set of points of the terrain. In the Continuous
Terrain Guarding problem, we are required to guard the entire terrain by
placing guards anywhere on the terrain. In the Discrete Terrain Guarding
version, we are only required to guard the vertex set but can only place guards
on the vertices themselves. Annotated Terrain Guarding generalizes the
discrete version by restricting the vertices where the guards can be placed to
a subset of V while requiring us to guard a given subset of vertices. We define
this problem formally below (referenced from [3]). Hereafter, we assume that the
number of vertices of a terrain is n.

Problem. Annotated Terrain Guarding: Let T (V,E) be a terrain, k ∈ N
and G, C ⊆ V . Decide if there exists a S ⊆ G with |S| ≤ k such that Vis S ⊇ C.

Note that if G = C = V in the annotated version of the problem, then it is ex-
actly the Discrete Terrain Guarding problem. We use (T (V,E), n, k,G, C)
to denote an instance of the Annotated Terrain Guarding problem. The
visibility graph of such an instance, GT , is defined to be the undirected graph
GT = (C, E′), where E′ = {(u, v) ∈ C2 | there is a g ∈ G that sees u and v}. In
some variants of the Art Gallery problem, vertices in the visibility graph are
connected by an edge if those two vertices see each other [26,17]. Terrain visibil-
ity graphs, when defined as above, have been studied previously - for example,
in [12,2]. Here, however, there exists an edge between two vertices of GT if there
exists an element in the guard set which can see both these vertices.
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Fig. 1. Examples of terrains where the vertices and edges are marked by small discs
and straight lines respectively. In (a), the vertices that are seen by U = {v2, v9} are
encircled. The second figure is an example of an orthogonal terrain.

A subclass of terrains which are of particular interest are orthogonal terrains.
In an orthogonal (or rectilinear) terrain, each edge is either parallel to the x-axis
or parallel to the y-axis. Furthermore, each vertex is incident to at most one edge
of each type. An example of an orthogonal terrain is given in Figure 1b.
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A graph G(V,E) is chordal if for any V ′ ⊆ V , where |V ′| ≥ 4, the subgraph
induced by V ′ is not a cycle. Equivalently, G is chordal if the graph induced by
any cycle of length at least 4 is not a cycle. Chordal graphs have been well studied
in literature since a lot of the typical NP-Hard graph problems can be solved
quickly for this graph class [18]. In particular, there exists a simple polynomial
time algorithm which solves the Clique Cover problem in chordal graphs [15].
The Clique Cover problem is defined as follows: given a graph G(V,E) and a
k ∈ N, decide if there exists a collection of k-many cliques of G that covers V .
An instance of this problem is denoted by (G(V,E), n, k) where n = |V |.

In the field of Parameterized Complexity, each instance I of a problem P is
associated with a parameter k. P is said to be fixed-parameter tractable (FPT)
if there exists an algorithm A, a computable function f defined on N, and a
constant c such that given an instance (I, k) of P, A decides correctly in O(f(k) ·
|I|c) time if (I, k) is a Yes instance of P. Here, |I| denotes the size of the input
instance I. Such an algorithm A is called a fixed-parameter algorithm or a FPT
algorithm. For a comprehensive introduction into Parameterized Complexity and
FPT algorithms, we refer the reader to the following books [10,9].

1.1 Motivation

Optimal guarding of terrains arises in the placement of antennas for communi-
cation networks. We study this problem in two dimensions to understand better
the considerably more difficult problem of guarding terrains in three dimensions.
Moreover, 1.5-dimensional terrains arise directly in applications of coverage along
a highway as well as in security lamp and camera placement along walls and
streets [5,20,23].

1.2 Related Work

Art Gallery is a classical problem in Computational Geometry and has been
studied extensively over the last five decades. In this problem, we are given a
polygon and are asked to find the minimum set of guards required to guard a
specified set of points of the polygon. We say a point guards another if the line
segment joining them lies within the polygon. Since it is impossible to survey
here the vast literature that discusses various versions and results regarding this
problem, we refer the reader to books, surveys and chapters dedicated to it
[26,27,16,6].

The Terrain Guarding problem was stated in 1995 by Chen et al. in
[7]. In the same paper, the authors hypothesized that both the continuous and
discrete versions of the problem are NP-Hard, but did not provide a concrete
proof in support of their claim. It was only in 2010 that King and Krohn finally
showed that both the Continuous Terrain Guarding and Discrete Ter-
rain Guarding problems are NP-Hard [23]. Meanwhile, the problem continued
to be studied from the viewpoint of approximation algorithms and Ben-Moshe et
al. [5] proposed the first constant-factor approximation for the discrete version
of the problem. The factor of approximation was improved over the course of
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several papers [22,8,11] and finally a PTAS for the discrete version of the prob-
lem was given by Krohn et al. in 2014 [24]. A PTAS for Continuous Terrain
Guarding was obtained a couple of years later by Friedrichs et al. [14]. This
work also proved that the continuous version of the problem is NP-Complete.

Thus, we have a satisfactory understanding of the approximability of the
terrain guarding problem. In the paper that they proved the NP-Hardness of
the terrain guarding problems, King and Krohn stated that the biggest remain-
ing question regarding this problem was its fixed-parameter tractability. Terrain
guarding has been shown to have a FPT algorithm with respect to few param-
eters [21,1] but it is still not known if the problem is fixed-parameter tractable
with respect to the number of guards that are required to guard the terrain.
In 2018, Ashok et al. showed that this is indeed true for the Discrete Or-
thogonal Terrain Guarding problem in [3]. Their algorithm exploited a
connection between guarding orthogonal terrains and covering chordal graphs
with cliques that was established by Katz and Roisman in Lemmas 3.6 and 3.7
of their paper [20]. In these lemmas, they considered the visibility graph of the
Annotated Orthogonal Terrain Guarding instance (T (V,E), n, k,R,Cl)
and proved that it is chordal (the sets R and Cl are defined in Section 2). They
then showed that any clique of the visibility graph can been seen by a single
guard. In this paper, we will show that these lemmas can be stated and proved
for a special case of the annotated version of the terrain guarding problem called
the Left-Sided Terrain Guarding problem. Informally, in this version of
the problem, the guards can only see to their left.

A preliminary version of this paper appeared at CALDAM-2021 [25]. In this
final version, the proof of Theorem 3.1 has been substantially shortened. More-
over, Section 4, which explores two applications of our main result, has been
added. The statements of some of the results presented in Section 3 have been
modified to be more concise.

1.3 Results

This paper presents two theorems which prove the equivalence between a re-
stricted case of the Left-Sided Terrain Guarding problem and the Clique
Cover problem in chordal graphs. Theorem 3.1 proves that the visibility graph
corresponding to an instance of this problem is chordal. Theorem 3.2 builds on
top of this and proves that there exists a clique in the visibility graph, if, and
only if, there exists a guard that sees all the vertices of that clique. Collating
these two theorems gives us the main result of this paper. Lemmas 3.4 and 3.5
show that this paper indeed generalizes results that are known for orthogonal
terrains.

Main Result Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guarding
instance where LVis G ⊇ C. Then, this is a true instance of the problem if,
and only if, (GT (C, E′), |C|, k) is a true instance of the Clique Cover problem
where GT , the left visibility graph of T , is a chordal graph.
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We generalize this result in two directions in Section 4. In Section 4.1, we
describe a discretization technique to solve the Left-Sided Continuous Ter-
rain Guarding problem in polynomial time using the main result of this paper.
Informally, in this version of the Terrain Guarding problem, we are required
to guard the entire terrain using guards that can only see to their left (refer to
Section 4.1 for the precise definition). In the final subsection of this paper, we
define terrain-like graphs and the Left-Sided Dominating Set problem. We
modify the proofs of the results proved in Section 3 to solve the Left-Sided
Dominating Set problem in terrain-like graphs (Theorem 4.5, Lemma 4.6).

2 Preliminaries

For points t1 and t2 on T , we say t1 precedes t2, denoted by t1 ≺ t2, if t1 appears
on the terrain before t2 does (the terrain is scanned from left to right). We say
that t1 � t2 if t1 ≺ t2 or t1 = t2. The Order Claim, which was originally stated
in [5] and later slightly generalized in [1], lays the foundation for the theorems
that follow in the next section.

Lemma 2.1 (Order Claim). Let a, b, c and d be four points on a terrain
T (V,E) such that a ≺ b ≺ c ≺ d. If a sees c and b sees d, then a sees d.

In an orthogonal terrain T (V,E), a vertex vi, where 1 < i < n, is convex
if x(vi) = x(vi+1) and y(vi) < y(vi+1) or x(vi) = x(vi−1) and y(vi) < y(vi−1)
and is reflex otherwise. Equivalently, vi is a convex vertex if the angle formed
by the vertices vi−1, vi and vi+1 (measured above the terrain) is convex and is
a reflex vertex otherwise. It is a left vertex if x(vi−1) = x(vi) and a right vertex
if x(vi) = x(vi+1). The set of convex vertices is denoted by C and the set of
reflex vertices is denoted by R. In Figure 1b, the convex vertices are encircled
and the reflex vertices are marked using squares. The set of vertices which are
both convex and left are called left convex vertices and is denoted by Cl. Right
convex, left reflex and right reflex vertices are defined similarly and are denoted
by Cr, Rl, and Rr respectively. Vertices a ∈ Cl and b ∈ Rr are said to be of
the opposite type as are vertices c ∈ Cr and d ∈ Rl. v1 is defined to be of the
opposite type as v2 and vn is defined to be that of vn−1. In Figure 1b, Rl = {v7},
Rr = {v2, v4, v8}, Cl = {v1, v3, v5, v9} and Cr = {v6}. We now describe the One-
Sided Terrain Guarding problem.

Problem. One-Sided Terrain Guarding: Let T (V,E) be a terrain, kl, kr ∈ N
and Gl,Gr, C ⊆ V . Decide if there exists a Sl ⊆ Gl and Sr ⊆ Gr with |Sl| ≤ kl
and |Sr| ≤ kr such that for all v ∈ C, there is a g ∈ Sl such that v ≺ g and g
sees v or a g ∈ Sr such that g ≺ v and g sees v.

We focus on two natural restrictions of the One-Sided Terrain Guarding
problem in this paper. In Left-Sided Terrain Guarding, we have Gr = ∅
and in Right-Sided Terrain Guarding, we have Gl = ∅. That is, in the left-
sided (right-sided) version of the One-Sided Terrain Guarding problem, we
must guard C using guards which can only see to their left (right). We explicitly
define the Left-Sided Terrain Guarding problem below.
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Problem. Left-Sided Terrain Guarding: Given a terrain T (V,E), k ∈ N
and G, C ⊆ V decide if there exists a S ⊆ G with |S| ≤ k such that for all v ∈ C,
there is a g ∈ S such that v ≺ g and g sees v.

In this case, we say that G is a set of left guards. Moreover, for any g ∈ G, we
let LVis g - which we call the left visibility region of g, to be set of all points on
the terrain which lie to left of g and can be seen by g. Similarly, we define the
left visibility region of a U ⊆ G as the union of the left visibility regions of the el-
ements of U . For the Right-Sided Terrain Guarding problem, right guards
and right visibility regions are defined symmetrically. We use (T (V,E), n, k,G, C)
to denote an instance for both these problems. It will be clear from context if the
instance corresponds to the annotated version or the left or right-sided versions
of the problem. Finally, we define the left visibility graph of a Left-Sided Ter-
rain Guarding instance (T (V,E), n, k,G, C) as the undirected graph GT (C, E′)
where E′ = {(u, v) ∈ C2 | there is a g ∈ G such that u, v ∈ LVis g}. The right
visibility graph is defined similarly for the Right-Sided Terrain Guarding
problem.

In the paper that they introduced the terrain guarding problem [7], Chen et
al. also described the left and right-sided versions of the problem. They produced
an algorithm, which they called Army-Withdraw, which ran in linear time to
solve these versions. Elbassioni et al. [11] constructed a bipartite graph G from
a Left-Sided Terrain Guarding instance (T (V,E), n, k,G, C) where G ∩C =
∅ with the bipartition (G, C). An element (g, c) ∈ G × C was an edge of this
graph if c ∈ LVis g. They then proved that the vertex-vertex incidence matrix
corresponding to this graph is totally balanced and used the properties of such
matrices to produce a 4-approximation algorithm for the Annotated Terrain
Guarding problem where G ∩ C = ∅. The author refers the reader to [13] and
[18] for a detailed discussion on totally balanced matrices.

3 Terrains and Chordal Graphs

In this section, we will prove two theorems which will lead us to the main result
of this paper. Even though this section deals exclusively with the Left-Sided
Terrain Guarding problem, the claims and their proofs apply, by symmetry,
to the Right-Sided Terrain Guarding problem. The first theorem proves
that the left visibility graph of a Left-Sided Terrain Guarding instance
(T (V,E), n, k,G, C) is chordal. The proof of this theorem considers a cycle C
of length p, where p ≥ 4, in GT (the left visibility graph of this instance) and
proves that the subgraph induced by C, denoted by GT [C], is not a cycle. This
is done by using Lemma 2.1 on the various cases that arise depending on the
positions of the vertices of C and the guards that see them on the terrain.

The second theorem considers a Left-Sided Terrain Guarding instance
(T (V,E), n, k,G, C) where LVis G ⊇ C. It proves that the vertices of any clique of
GT can be seen by a single guard. This proves that k-many guards can see all of
C if, and only if, there exists k-many cliques that cover GT . This, along with the
previous theorem, directly proves our main result. We prove this theorem using
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induction over the number of vertices in the clique. In practice, the additional
assumption that G sees all of C is very weak - if G does not see C, then, for
any natural number k, (T (V,E), n, k,G, C) is a false instance of the Left-Sided
Terrain Guarding problem anyway.

We then prove an important corollary of our main result. It states that if
a Left-Sided Terrain Guarding instance is false, then there exists a small
subset of C (with k+1 vertices) that cannot be seen by k-many guards. We prove
this by producing an independent set U of size k + 1 in GT and observing that
if k guards did see all the vertices of U , then U would fail to be an independent
set. Finally, we draw parallels between our results and the following lemma due
to Katz and Roisman [20]: for an orthogonal terrain T , (T (V,E), n, k,R,Cl) is a
true instance if, and only if, (Gl(Cl, E

′), |Cl|, k) is a true instance of the Clique
Cover problem. This is done by observing that left convex vertices can only see
to one side.

Theorem 3.1. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guarding
instance. Then, the left visibility graph of this instance, say GT , is chordal.

Proof. Let C ⊆ C where |C| = p ≥ 4 be a cycle in GT . We prove that GT [C] is
not a cycle. Let C = {c1, c2 . . . cp} be the order of the vertices as they appear on
the cycle. Also, we assume, without loss in generality, that ci � c1 for all ci ∈ C
and that cp ≺ c2. As c1 and cp are neighbours in GT , there is a left guard g1,p
which sees both these vertices. Similarly, we have g1,2, a left guard, which sees
both c1 and c2. Note that c1 ≺ g1,p and c1 ≺ g1,2. If g1,2 = g1,p = g, then g sees
both c2 and cp. This implies that c2 and cp share an edge in GT [C]. Since p ≥ 4,
(c2, cp) is a chord of the cycle. Thus, GT [C] is not a cycle. We are now left with
two cases:

cp c2 c1

g1,p

g1,2

(a)

cp c2 c1

g1,2

g1,p

(b)

Fig. 2. Part (a) illustrates Case 3.1.1 of Theorem 3.1. Here, g1,p precedes g1,2. Two
vertices that see each other are connected by a dashed line. If we substitute a, b, c and
d with cp, c2, g1,p and g1,2 respectively in Lemma 2.1, we get that cp sees g1,2 in this
case. Part (b) depicts Case 3.1.2 where g1,2 ≺ g1,p. We can apply Lemma 2.1 on the
encircled vertices. On doing so, we get that c2 sees g1,p.
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Case 3.1.1 (g1,p ≺ g1,2). This is illustrated in Figure 2a. In this case, we have
cp ≺ c2 ≺ g1,p ≺ g1,2 and cp sees g1,p while c2 sees g1,2. Thus, by Lemma 2.1,
g1,2 sees cp. Since g1,2 sees c2 by construction, there is an edge between c2 and
cp in GT . As observed previously, this implies that GT [C] is not a cycle.

Case 3.1.2 (g1,2 ≺ g1,p). Figure 2b illustrates this case. By construction, we
have c2 ≺ c1 ≺ g1,2 ≺ g1,p and c2 sees g1,2 while c1 sees g1,p. We infer that g1,p
sees c2 by applying Lemma 2.1 on these vertices. Thus, there is an edge between
c2 and cp in GT [C] proving that GT [C] is not a cycle.

This completes the proof of this theorem since C was an arbitrary cycle of
length at least 4.

Theorem 3.2. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guarding
instance where LVis G ⊇ C. Then, if GT denotes the left visibility graph of this
instance, for K ⊆ C, GT [K] is a clique if, and only if, there is a g ∈ G such that
LVis g ⊇ K.

Proof. Let K be a set such that there is a g ∈ G such that LVis g ⊇ K. Then,
for any pair of vertices in K there is an edge between them in GT [K] since there
is a guard (g itself) seeing them both. Thus, GT [K] is a clique. Now, we prove
the forward direction of the claim. Assume that K ⊆ C such that GT [K] is a
clique. We prove that there exists a guard seeing all of K by induction on the
number of vertices in K. If |K| = 1 or |K| = 2, then, since LVis G ⊇ C, our
claim follows trivially. Assume that our supposition holds for all cliques of size
at most p, where p ≥ 2.

Let K = {k1, k2, . . . kp, kp+1} be a subset of C such that GT [K] is a clique.
The vertices of K are ordered according to how they appear on the terrain. Let
K ′ = {k2, k3 . . . kp, kp+1}. Since GT [K ′] is a clique of size p, by the induction

k2 kj kp+1

g2

g1

k1

(a)

k2 kj kp+1

g1

g2

k1

(b)

Fig. 3. This figure corresponds to the cases that arise in Theorem 3.2. In (a) g2 precedes
g1 while in (b) g1 precedes g2. By Lemma 2.1, g1 also sees k1 in (a) and g2 guards all
the vertices from k2 through to kp+1 in (b).



One-Sided Terrain Guarding and Chordal Graphs 9

hypothesis, there is a left guard g1 such that LVis g1 ⊇ K ′. Since there is a
(k1, kp+1) edge in GT [K], there is a left guard, say g2, which sees k1 and kp+1.
If g1 = g2 = g, then we have LVis g ⊇ K proving the supposition. We are now
left with two cases:

Case 3.2.1 (g2 ≺ g1). This case is shown in Figure 3a. Note that k1 ≺ k2 ≺ g2 ≺
g1 and k1 sees g2 while k2 sees g1. Hence, by Lemma 2.1, g1 guards k1 as well.
Thus, LVis g1 ⊇ K.

Case 3.2.2 (g1 ≺ g2). This is illustrated in Figure 3b. Here, for any kj ∈ K ′

where j < p + 1, kj ≺ kp+1 ≺ g1 ≺ g2. By Lemma 2.1, we have that g2 sees kj
for all such j. Thus, LVis g2 ⊇ K.

This proves our supposition and completes the proof by induction. Note that
the situations illustrated in Figures 3a and 3b are similar to the ones in Figures 2a
and 2b. They are presented in this proof again for clarity.

Theorems 3.1 and 3.2 are, to the best of the author’s knowledge, an addition
to existing literature. Combining these two theorems gives us the main result of
this paper. As stated at the beginning of this section, a similar result also holds
for the Right-Sided Terrain Guarding problem.

Theorem 3.3. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guarding
instance where LVis G ⊇ C. Then, this is a true instance of the problem if,
and only if, (GT (C, E′), |C|, k) is a true instance of the Clique Cover problem
where GT , the left visibility graph of T , is a chordal graph.

v1

v2

v3
v4 v5

v6

v7
v8

(a)

v1
v2

v3
v4

v7
v6

v5

(b)

Fig. 4. This figure provides examples of terrains in which Theorem 3.3 fails to be true
if left guards are allowed to see themselves. In these two terrains, the vertices of C
and G have been encircled and marked by squares respectively. In (a), we illustrate a
terrain for which Theorem 3.1 is no longer true. Part (b) presents an example where a
clique in GT is not seen by a single left guard.

We take a brief detour to discuss the correctness of Theorem 3.3 if left guards
are allowed to see themselves (note that by our definition of Left-Sided Ter-
rain Guarding in Section 1, a left guard cannot see itself). Unfortunately,
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both Theorems 3.1 and 3.2 are false if this is the case. Examples of terrains
that do not satisfy these theorems are presented in Figures 4a and 4b. Con-
sider the terrain in Figure 4a with G = {v4, v5, v6, v8} as the set of left guards
and C = {v1, v3, v4, v5}. Clearly, the visibility graph of this instance is the four
cycle. Hence, it is not chordal. In the terrain illustrated by Figure 4b, we let
C = {v1, v3, v4} and G = {v4, v5, v7} be a set of left guards. v1 shares an edge
with both v3 and v4 in GT since v7 sees both v1 and v3 while v5 sees both v1
and v4. Furthermore, since v4 sees itself as well as v3, there is an edge between
v3 and v4 in GT . Thus, GT [C] is a clique. However, none of the three guards in
G guard all the vertices of C: v4 does not see v1, v5 does not see v3, and v7 does
not see v4. It is also clear that Theorem 3.2 fails to hold if G does not see all of
C. For example, if C = {v3} and G = {v5} in the terrain illustrated in Figure 4b,
then the isolated vertex v3 is a clique but no guard in G sees it.

It is well known that in a chordal graph G(V,E), the minimum number of
cliques required to cover V , denoted by χ(G), is equal to the size of a maximum
sized independent set of G, denoted by α(G) [18]. The algorithm that solves the
Clique Cover problem can be modified slightly to solve the Independent
Set problem in polynomial time [15]. We use these two properties of chordal
graphs in the proof of the lemma that follows.

Lemma 3.4. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guarding
instance where LVis G ⊇ C. One can decide, in polynomial time, if this is a
true instance of the problem. If this instance is false, then one can find U ⊆ C
in polynomial time such that |U | = k + 1 and (T (V,E), n, k,G, U) is a false
instance.

Proof. By Theorem 3.3, we know that the left visibility graph, say GT , corre-
sponding to (T (V,E), n, k,G, C) is chordal and that it is a true instance if, and
only if, (GT (C, E′), |C|, k) is a true instance of the Clique Cover problem.
Since the Clique Cover problem can be solved in polynomial time in chordal
graphs, we can decide if (T (V,E), n, k,G, C) is a true instance of the Left-Sided
Terrain Guarding problem in polynomial time.

Now, if (T (V,E), n, k,G, C) is false, then GT cannot be covered by k many
cliques. Thus, χ(GT ) > k. This implies that α(GT ) > k. We compute a maximum
sized independent set of GT and let U be a subset of size k+1 of this independent
set. Since GT is chordal, this can be done in polynomial time. Clearly, U is an
independent set of GT . If there exists k-many guards in G which guards U , then
there must exist one guard which sees at least two vertices of U . By construction
of GT , there must exist an edge between them. This contradicts the fact that U
is an independent set of GT and thus completes the proof of this lemma.

We note that the above lemma holds for the right-sided version of the ter-
rain guarding problem as well. The lemma stated and proved above generalizes
Lemmas 4.8 and 4.9 of [3]. These were used to present a FPT algorithm with
respect to the solution size for the Discrete Orthogonal Terrain Guard-
ing problem in that paper. Algorithm 1 presents the procedure described in the
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Algorithm 1: Guarding Terrains with Left Guards

Input: A Left-Sided Terrain Guarding instance (T (V,E), n, k,G, C)
where LVis G ⊇ C

Result: Yes if (T (V,E), n, k,G, C) is a true instance; a U ⊆ C with
|U | = k+ 1 such that (T (V,E), n, k,G, U) is a false instance otherwise

GT (C, E′)←− ComputeVisGraph((T (V,E), n, k,G, C))
χ(GT )←−MinCliqueCover(GT (C, E′))
if χ(GT ) ≤ k then

Output: Yes
end
else

I ←−MaxIndSet(GT (C, E′))
U ⊆ I such that |U | = k + 1
Output: U

end

proof of Lemma 3.4. In this algorithm, we use well known subroutines to com-
pute left visibility graphs of terrains (ComputeVisGraph), to find the smallest
number of cliques required to cover a chordal graph (MinCliqueCover) and
to find independent sets of maximum size of chordal graphs (MaxIndSet). The
trivial algorithm to compute the visibility graph of a terrain runs in O(n4) time.
However, there are more complicated algorithms which run in quadratic time to
compute visibility graphs [19]. The author refers the reader to [18] for greedy
quadratic time algorithms which solve the Clique Cover and Independent
Set problems.

We conclude this section by drawing parallels between Theorem 3.3 and the
following result by Katz and Roisman [20].

Lemma 3.5. Consider the Annotated Orthogonal Terrain Guarding
instance (T (V,E), n, k,R,Cl) and let Gl be the visibility graph corresponding to
this instance. Then, Gl is chordal. Furthermore, (T (V,E), n, k,R,Cl) is a true
instance of the problem if, and only if, (Gl(Cl, E

′), |Cl|, k) is a true instance of
the Clique Cover problem. The symmetric claim holds for the set of right
convex vertices.

Note that a vertex v ∈ Cl can only see a reflex vertex which is to its right (with
the possible exception of the reflex vertex which just precedes it) [20]. Referring
back to Figure 1b will make this observation straightforward. Furthermore, since
C ∩R = ∅, the guards that are placed at these reflex vertices do not need to see
themselves. Equivalently, a vertex g ∈ R which is to guard v needs to look only
to its left. Thus, for guarding Cl, we can consider R to be a set of left guards.
Using a symmetric argument, we see that the guard set that is to guard the
right convex vertices can be considered to be a set of right guards. Clearly, since
Vis R ⊇ V , R sees all of Cl and Cr.
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4 Natural Extensions

In this final section of the paper, we use the results obtained in Section 3 to
solve two problems. We first discuss the Left-Sided Continuous Terrain
Guarding problem in which we are required to guard the entire terrain (with the
exception of the last vertex) using left guards which can be placed anywhere on
the terrain. We first prove that it is enough to consider the case where the guards
are placed on the vertices of the terrain T . We then construct a polynomially
large (O(n2)-sized) set W of points with the following property: if a set of left
guards see W , then it must see all of T . Hence, we can use Theorem 3.3 to solve
the Left-Sided Continuous Terrain Guarding problem.

Finally, we extend and modify Theorem 3.3 and Lemma 3.4 to solve the
Left-Sided Dominating Set problem in terrain-like graphs (these terms are
defined in Section 4.2). We prove that for a Left-Sided Terrain Guard-
ing instance there exists an equivalent Left-Sided Dominating Set instance
in this subclass of graphs. Since the set of terrain-like graphs that correspond
to terrains is a strict subset of the entire subclass of such graphs, the results
obtained in this section generalize the results in Section 3.

As in Section 3, we deal exclusively with the left-sided versions of problems in
this section. Right-sided versions of these problems and the results corresponding
to them can be obtained using simple symmetry arguments.

4.1 Continuous Terrain Guarding

As mentioned briefly in Section 1, in the Continuous Terrain Guarding
problem, given a natural number k and a terrain T , we are required to deter-
mine if there is a set of points on the terrain of size at most k that guards the
entire terrain. In this subsection, we define the Left-Sided Continuous Ter-
rain Guarding problem. For an instance of this problem, we use discretization
techniques similar to ones in [7] and [14] to construct an equivalent Left-Sided
Terrain Guarding instance. Hence, by Theorem 3.3, we have a polynomial
time algorithm to solve the Left-Sided Continuous Terrain Guarding
problem.

Problem. Left-Sided Continuous Terrain Guarding: Let T (V,E), where
V = {v1, v2 . . . vn}, be a terrain and k ∈ N. Decide if there exists a S ⊂ T with
|S| ≤ k such that LVis S = T \ {vn}.

Since the last vertex of a terrain is the rightmost vertex of the terrain, no left
guard can guard it. To exclude this trivial false instance, we only require S to
guard T \{vn} in the Left-Sided Continuous Terrain Guarding problem.
We let (T (V,E), n, k) denote an instance of this problem. For two points t1 and
t2 on a terrain T where t1 ≺ t2, we let Tt1,t2 denote the part of the terrain that
lies between these points. We now make the following simple observation. The
proof of this observation is based on the one in [7].

Observation 4.1. Let T (V,E) be a terrain and S ⊆ T . Then, there exists
S′ ⊆ V with |S′| ≤ |S| such that LVis S′ ⊇ LVis S.
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Proof. Let g ∈ S be a guard placed in the interior of an edge of T and t ∈ LVis g.
Let (vj , vj+1) denote the edge within which g lies. Then, t ≺ g and does not lie
below the line←−−→vjvj+1. Since g sees t, no point in Tt,g lies above tg. Hence, no point
in Tt,vj+1

lies above tvj+1. This proves that t ∈ LVis vj+1. This is illustrated in
Figure 5a. Hence, LVis vj+1 ⊇ LVis g. If, we construct S′ from S by moving
a guard in the interior of the edge to its right endpoint, then |S′| ≤ |S| and
LVis S′ ⊇ LVis S.

By Observation 4.1, we can assume that the optimal left guard set which
guards a terrain is a subset of the vertex set of that terrain. We now construct
a finite subset W of a terrain T (V,E), which we call the witness set, with the
following property: for any S ⊆ V with LVis S ⊇W , LVis S = T \ {vn} where
vn is the last vertex of T .

Constructing W. Consider a vertex v of the terrain. Then, v sees at most n-many
maximal “pieces” of the terrain to its left (refer to Figure 5b for an example).
Let W ′(v) denote the set of endpoints of these pieces and let P = ∪v∈VW ′(v).
Let {p1, p2 . . . pl} be the points of P sorted according to how they appear on
the terrain. For each j, where 1 ≤ j < l, let Tj = Tpj ,pj+1

. Pick some point
wj ∈ Tj \ {pj , pj+1} for each j and let W = {w1, w2 . . . wl−1}.

v1

v2
v3

v4
v5

v6

v7 v8

v9
v10

v11

t g

(a)

v1

v2
v3

v4
v5

v6

v7 v8

v9
v10

v11

(b)

Fig. 5. Part (a) illustrates Observation 4.1. Here, g is a left guard on the interior of
the (v8, v9) edge and t is a point that g sees. Then, v9 sees t. In part (b) of this figure,
the maximal pieces of the terrain seen by a left guard placed at v9 are marked in red.
The endpoints of these pieces which are not vertices are marked using black squares.

Observation 4.2. W is a witness set of T (V,E) where V = {v1, v2 . . . vn}.

Proof. Let S ⊆ V such that LVis S ⊇ W . We prove that LVis S = T \ {vn}.
Let wj ∈ W . By our assumption, there exists a left guard g ∈ S which sees
wj . Since S ⊆ V , g ∈ V . Hence, by construction of P , LVis ⊇ Tj . Since
∪j:wj∈WTj = T \ {vn}, LVis S = T \ {vn}.

We construct a terrain T̄ (V̄ , Ē) from T (V,E) by setting V̄ = V ∪W . Hence,
from Observations 4.1 and 4.2, we directly have the following lemma.
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Lemma 4.3. Let (T (V,E), n, k) be an instance of the Left-Sided Contin-
uous Terrain Guarding problem. Then, this instance is equivalent to the
Left-Sided Terrain Guarding instance (T̄ (V̄ , Ē), |V̄ |, k, V,W ) where W is
the witness set of T and V̄ = V ∪W .

Since W ∈ O(n2), by Theorem 3.3 we have an O(n4) algorithm to solve the
Left-Sided Continuous Terrain Guarding problem.

4.2 Terrain-Like Graphs

Let G(V,E) be an undirected graph. We say that u dominates v in G if u ∈
NG[v]. Here, NG[v] denotes the closed neighbourhood of the vertex v in G. That
is, NG[v] = {u | (u, v) ∈ E} ∪ {v}. For a subset S of V , we define NG[S] as
∪v∈SNG[v]. S is a dominating set of G if NG[S] = V . In the classical Dominat-
ing Set problem, we are given an undirected graph and a natural number k and
are asked if there exists a dominating set of size at most k. In this subsection,
we study a variant of the Dominating Set problem in the family of terrain-like
graphs. This family of graphs was first defined and used by Ashur et al. in [4].

Definition (Terrain-Like Graph). Let H(V, F ) be an undirected graph where
n = |V |. H is said to be terrain-like if there exists an ordering {v1, v2 . . . vn} of
V such that for all {vi, vj , vk, vl} ⊆ V where i < j < k < l and (vi, vk), (vj , vl)
belong to the edge set, (vi, vl) ∈ F .

v1

v2
v3

v4
v5

v6

(a)

v1

v2

v3 v4

v5

v6

(b)

Fig. 6. Part (a) of this figure is a terrain T (V,E) on 6 vertices. G̃T (V, Ẽ), where
Ẽ = {(u, v) ∈ V 2 | u sees v} is illustrated in (b). By Observation 4.4, G̃ is terrain-like.

An example of a terrain-like graph is given in Figure 6b. When working with a
terrain-like graph, we fix an ordering of the vertices for which the above definition
holds. For two vertices vi and vj of a terrain-like graph we say vi precedes vj ,
denoted by vi ≺ vj if i < j. By Lemma 2.1, the following observation is clear.
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Observation 4.4. Let T (V,E) be a terrain where V = {v1, v2 . . . vn}. Then,
G̃T (V, Ẽ), where Ẽ = {(u, v) ∈ V 2 | u sees v} and the vertices are ordered
according to how they appear on terrain, is terrain-like. Moreover, if G, C ⊆ V ,
a subset S of G dominates C in G̃ if, and only if, S guards C in T .

Indeed, it is due to Observation 4.4 that terrain-like graphs are named as
they are. However, not all terrain-like graphs arise out of terrains. For example,
consider H(V, F ) where V = {v1, v2, v3} and F = {(v1, v2)}. For any terrain
T (V,E) defined on three vertices, the second vertex sees the other two vertices.
Hence, H(V, F ) is not G̃T (V, Ẽ) for any terrain T . We now define an analogue
of the Left-Sided Terrain Guarding problem below for terrain-like graphs.

Problem. Left-Sided Dominating Set: Let H(V, F ) be a terrain-like graph,
k ∈ N and G, C ⊆ V . Decide if there exists a S ⊆ G with |S| ≤ k such that for
any v ∈ C, there is a g ∈ S such that g dominates v and v ≺ g.

We let (H(V, F ), n, k,G, C) denote an instance of the Left-Sided Domi-
nating Set problem where n = |V |. As in Section 1, define the left visibil-
ity graph of such an instance as the undirected graph GH = (C, F ′), where
F ′ = {(u, v) | there is a g ∈ G, where u ≺ g and v ≺ g, such that u, v ∈ NH [g]}.
Since the proofs of Theorems 3.1 and 3.2 do not use any geometric properties
of terrains, these proofs can be modified to prove the following results regarding
the Left-Sided Dominating Set problem.

Theorem 4.5. Let (H(V, F ), n, k,G, C) be a Left-Sided Dominating Set in-
stance where for all v ∈ C, there is a g ∈ G such that v ≺ g and g dominates
v. Then, this is a true instance of the problem if, and only if, (GH(C, F ′), |C|, k)
is a true instance of the Clique Cover problem where GH , the left visibility
graph of H, is a chordal graph.

Lemma 4.6. Let (H(V, F ), n, k,G, C) be a Left-Sided Dominating Set in-
stance where for all v ∈ C, there is a g ∈ G such that v ≺ g and g dominates
v. One can decide, in polynomial time, if this is a true instance of the problem.
If this instance is false, then one can find U ⊆ C in polynomial time such that
|U | = k + 1 and (H(V, F ), n, k,G, U) is a false instance.

The above two results directly imply that Algorithm 1 can be modified
to solve Left-Sided Dominating Set. By Observation 4.4, a Left-Sided
Terrain Guarding instance (T (V,E), n, k,G, C) is equivalent to the Left-
Sided Dominating Set instance (G̃T (V, Ẽ), n, k,G, C). Hence, Theorem 4.5
and Lemma 4.6 are stronger results than Theorem 3.3 and Lemma 3.4 respec-
tively.
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